"UNIVERSIDAD EMILIANO ZAPATA"

OBJETIVO DE LA MATERIA Adquirir una combinación de habilidades en ingeniería de control y de sistemas necesarios para poder diseñar y analizar sistemas mecatrónicos.

INGENIERIA EN		MECATRONICA										
MATERIA		Taller de Mecatrónica				LINEA CURRICULAR			TECNOLOGIA			
TETRAMESTRE		OCTAVO	CLAVE	1	ESM-107		SERIACION ESM-101					
HFD	3	HEI		3		THS		6		CRED	ITOS	5

UNIDAD TEMÁTICA	OBJETIVO DE LA UNIDAD	CONTENIDOS	RECURSOS BIBLIOGRÁFICOS	
UNIDAD I	Determinar el uso de cada sensor	*Sensores y transductores.	W.Bolton	
SENSORES Y	para cada una de las funciones	*Terminología del funcionamiento.	MECA TRÓNICA.	
TRANSDUCTORES.	necesarias.	*Desplazamiento, posición y proxi -	Ed. Alfaomega, 2009	
		midad.		
		*Velocidad y movimiento.	Stanley Wolf/Richard F.M.	
		*Fuerza.	Smith.	
		*Presión de fluidos.	GUÍA PARA MEDICIONES	
		*Flujo de líquidos.	ELECTRÓNICAS Y PRÁC.	
		*Nivel de líquidos.	DE LABORATORIO.	
		*Temperatura.	Ed. Prentice Hall, 2007	
		*Sensores de luz.		
		*Selección de sensores.	Katsuhiko Ogata.	
			INGENIERÍA DE CONTROL	
UNIDAD II	Utilizar los sistemas de actuadores	*Sistemas de actuadores.	MODERNA.	
SISTEMAS DE	para determinar el buen	*Sistemas neumáticos e hidráulicos	Ed. Pearson Prentice Hall, 2008	
ACTUADORES	funcionamiento	*Válvulas para control de dirección.		
NEUMÁTICOS	de los diversos tipos de válvulas,	*Válvulas de control de presión.	Antonio Creus	
E HIDRÁULICOS.	neumáticos.	*Cilindros.	INSTRUMENTACIÓN	
		*Válvulas para el control de procesos	INDUSTRIAL.	
			Ed. Alfaomega marcombo,	
			2009.	

UNIDAD III SISTEMAS DE. ACTUACIÓN MECÁNICA	Aplicar el sistema en los tipos de movimientos de cada giro.	*Actuadores giratorios. *Sistemas mecánicos. *Sistemas mecánicos. *Tipos de movimiento. *Cadenas cinemáticas. *Levas. *Trenes de engranes. *Transmisión por correa y cadena. *Chumaceras. *Aspectos mecánicos de la selección de un motor.	W.Bolton MECA TRÓNICA. Ed. Alfaomega, 2009 Stanley Wolf/Richard F.M. Smith. GUÍA PARA MEDICIONES ELECTRÓNICAS Y PRÁC. DE LABORATORIO. Ed. Prentice Hall, 2007
UNIDAD IV SISTEMAS DE ACTUACIÓN. ELÉCTRICA	Utilizar los diferentes tipos de sistemas para aplicarlos en los diferentes tipos de motores.	*Sistemas eléctricos. *Interruptores mecánicos. *Interruptores de estados sólidos. *Solenoides. *Motores de CD. *Motores de CA. *Motores paso a paso.	Katsuhiko Ogata. INGENIERÍA DE CONTROL MODERNA. Ed. Pearson Prentice Hall, 2008 Antonio Creus INSTRUMENTACIÓN INDUSTRIAL. Ed. Alformaco marcombo
UNIDAD V CONTROLADORES EN LAZO CERRADO.	identificar los Modos de controladores que puedan ser utilizados.	*Procesos continuos y discretos. *Modos de control. *Modo de dos posiciones. *Modo proporcional. *Control derivativo. *Control integral. *Controlador PID. *Controladores digitales. *Comportamiento de los sistemas de control. *Sintonización. *Control de velocidad. *Control adaptable.	Ed. Alfaomega marcombo, 2009.
UNIDA VI	Aplicar los diferentes sistemas para	Interfaces.	

SISTEMAS DE	la entrada y salida de información que		
ENTRADA/SALIDA	se requiere en cada uno de los	Puertos de entrada/salida.	
	objetivos	Requisitos de una interfaz.	
	requeridos.	Adaptador de interfaz para disposi-	
		tivos periféricos.	
		Interfaz para comunicaciones en	
		serie.	

ACTIVIDADES DE APRENDIZAJE:-

- Elaborar un prototipo.
- Trabajo individual o grupal por parte de los estudiantes.
- Análisis de casos
- Construcción de mapas conceptuales que reafirmen la importancia de los elementos teóricos básicos.
- Exposición de los temas a través de ejercicios teóricos y de aplicación seleccionados como base de aprendizaje
- Solución dirigida de ejercicios teóricos y de aplicación.
- Solución de ejercicios en forma individual y en equipo
- Solución a ejercicios asignados de tarea.
- Investigación de conceptos básicos y aplicaciones.
- Resolución de ejercicios teóricos y de aplicación a distintas áreas, en forma individual y grupal
- Trabajo realizado en el aula.
- Examen.

RECURSOS DIDÁCTICOS: Pizarrón, infocus, laptop.

EVALUACIÓN: Tres evaluaciones (Parcial al finalizar el mes) que equivalen al 25%, cada una, de la evaluaciones; Exámenes Rápidos que equivalen

al 10% de la evaluación final y los Trabajos Individual y en Equipo que equivalen al 15% de la evaluación final cada uno.